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We calculate the von Neumann and Rényi bipartite entanglement entropy of the O(2) model
with a chemical potential on a 1+1 dimensional Euclidean lattice with open and periodic boundary
conditions. We show that the Calabrese-Cardy conformal field theory predictions for the leading
logarithmic scaling with the spatial size of these entropies are consistent with a central charge c = 1.
This scaling survives the time continuum limit and truncations of the microscopic degrees of freedom,
modifications which allow us to connect the Lagrangian formulation to quantum Hamiltonians. At
half-filling, the forms of the subleading corrections imposed by conformal field theory allow the
determination of the central charge with an accuracy better than two percent for moderately sized
lattices. We briefly discuss the possibility of estimating the central charge using quantum simulators.

I. INTRODUCTION

Conformal symmetry has been a major source of inspi-
ration for theoretical physics during the last few decades
[1, 2]. In two dimensions the conformal algebra is infi-
nite dimensional and can be identified with the Virasoro
algebra generating the reparameterization of the world
sheet in string theory. This algebra admits central exten-
sions labeled by the central charge, denoted c hereafter.
Known unitary representations with c = 1−6/(m(m+1))
andm = 3, . . . , 6 describe the critical behavior of the two-
dimensional Ising and 3-states Potts models and their
tricritical versions [3–5]. In three dimensions, the possi-
bility that a cusp on the boundary of the region of anoma-
lous dimensions allowed by the conformal bootstrap cor-
responds to the Ising universality class has triggered very
interesting new developments [6–8]. In four dimensions,
the idea that electroweak symmetry breaking could result
from new strong interactions at a multi-TeV scale with
an approximate conformal symmetry [9–14] protecting a
light Higgs-Brout-Englert boson, has motivated numer-
ous lattice studies [15–17].

QCD-like systems (i.e. vector gauge theories) with var-
ious numbers of fundamental fermions and also fermions
in different representations are being explored on the lat-
tice (the latest results for various models are presented,
for instance, in Refs. [18–22]). Based on the Banks-Zaks
argument, systems with a large number of fermion fla-
vors, Nf , feature a conformal phase [23]. However, pre-
cisely at what value of Nf this happens for a particular
gauge group and fermion representation remains a sub-
ject of controversy. For instance, for the SU(3) gauge
group and fermions in the fundamental representation,
while one study [24] claims observing conformal behav-
ior at Nf = 12, another [25] argues that Nf = 12 is not
conformal.

To probe the conformality, various lattice methods, de-
signed and well-tested for QCD, have been employed.
The major obstacle, however, is that large-Nf theories
are very different from QCD. While in QCD the running

of the coupling is fast enough so that on the scale of a few
typical lattice spacings one can probe both the ultravi-
olet perturbative and the infrared confining phenomena,
as manifested, for instance, in one of the basic and ex-
tensively studied quantities, the static quark anti-quark
potential, large-Nf theories require fine lattices and large
volumes to disentangle the physics from the lattice cutoff
effects. This makes identifying conformal theories from
the massless extrapolations of massive lattice simulations
a nontrivial task [24–29].

In the given examples, conformal symmetry is explic-
itly broken by the lattice regularization and only re-
emerges in a suitable continuum limit. Given the pre-
dictive power of conformal symmetries, it is important
to identify the restoration of these symmetries in practi-
cal calculations at finite volumes. The entanglement en-
tropy may offer a promising direction in understanding
the conformal behavior of systems with finite-size scaling
and could be a more sensitive tool, especially for small-
size systems. How the entanglement entropy of a sub-
system scales with the its spatial volume provides useful
information about the symmetries present and the con-
formality of the phases of a model [30]. This is very well
understood in two (one space and one euclidean time)
dimensions where Calabrese and Cardy (CC) [31] have
shown that various entanglement entropies scale like the
logarithm of the size of the subsystem with coefficients
proportional to the central charge.

Calculations of the entanglement entropy in lattice
gauge theory with Monte Carlo methods have so far been
performed only in pure gauge theory [32–34]. Those cal-
culations are more expensive than typical lattice simula-
tions due to replicating the system and may require extra
developments for theories with fermions. However, in the
long run finite-size scaling of the entanglement entropy
may provide a cleaner way to study conformal systems
than brute-force increasing lattice volumes and decreas-
ing lattice spacings in the hope of suppressing lattice ar-
tifacts.

In the following, we use renormalization group (RG)
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based methods [35–39] to calculate the von Neumann
and second order Rényi entanglement entropy of the clas-
sical O(2) nonlinear sigma model with a chemical po-
tential in 1+1 dimensions on a space-time lattice. This
model is often used as an effective theory for the Bose-
Hubbard model [40] and acts well as a toy model for
gauge theories in higher dimensions. The model has vor-
tex solutions, no long range order, and demonstrates
a confinement-deconfienment transition of vortex-anti-
vortex pairs. This model [41] has a superfluid (SF) phase
where we expect to observe the CC scaling and multiple
Mott insulator phase lobes lacking the CC scaling. By
using rectangular lattices of increasing spatial size and
very large (Euclidean) temporal sizes we probe the zero
temperature entanglement entropy. We focus on half-
integer charge density where the entropies considered are
extremal. We then take the time continuum limit and
truncate the microscopic degrees of freedom in such a
way that we obtain a Hamiltonian that can be quantum
simulated [41, 42]. These modifications should not af-
fect the universal parts of the scaling. Our goal is to
demonstrate that the constraints imposed by conformal
symmetry on the finite size scaling, as well as conjectures
[43–45] explaining oscillations in the scaling, allows us to
identify conformal behavior for modest lattice sizes.

The motivation for relating this model to a model that
can be quantum simulated on optical lattices with cold
atoms is prompted in current challenges with classical
computation. It would be not only valuable to have
efficient calculational tools for understanding conformal
behavior for more complex, higher dimensional systems,
but also to completely overcome the difficulty with large
volume, small lattice spacing calculations entirely. This
can be done by using quantum simulation, which can al-
ready reach volumes in 3+1 dimensions much larger than
any classical computation. This idea is pursued in more
detail in [46].

Manipulations of small one-dimensional systems of
cold atoms trapped in optical lattices have allowed ex-
perimental measurements of the second order Rényi en-
tanglement entropy [47] using a beam splitter method
proposed in Ref. [48]. These measurements have been
performed for small chains of four atoms. A more recent
experiment on thermalization [49] involves six atoms. It
is expected that in the near future, manipulations of
chains with twelve or more atoms will be possible [50].

The paper is organized as follows: in Section II we
review the Rényi entropy and the corresponding conven-
tions used in this paper. We also discuss the currently
understood asymptotic scaling in the Rényi entropy as a
function of system size. In Section III we introduce the
O(2) non-linear sigma model on a lattice and the ten-
sor formulation of the model. We give explicit tensor
elements and discuss the isotropic and anisotropic cou-
pling limits used in this paper as well as some results
obtained in those limits. In Section IV we give results
for fits to Rényi entanglement entropy data. We consider
the scaling of the entanglement entropy as a function of

system size. We also go into detail about the methodol-
ogy used in our fits and make comparisons with theoret-
ical predictions. In Section V we discuss the possibility
of quantum simulating the O(2) non-linear sigma model
and a possible quantum Hamiltonian that could be used
for simulation. We also consider finite temperature ef-
fects to the Entanglement Entropy. Finally in Section
VI we give concluding remarks about in what possible
directions work could proceed, and other possible impli-
cations of this work.

II. THE RÉNYI ENTANGLEMENT ENTROPY

For the calculation of the entanglement entropy, we
will restrict ourselves to 1+1 dimensional space-time, or
one space and one Euclidean time dimension, where the
one dimensional space has an even number of sites. For
all results in this work the system was divided into two
identical parts, each one half the size of the entire spatial
dimension, Ns (justification for this can be found in the
supplemental material of Ref. [46]). Other partitions of
the system were considered as checks and exploratory.
Tracing over one of the halves, we obtain the reduced
density matrix ρ̂A for the other half (denoted A),

ρ̂A = Trenv[ρ̂] (1)

where the trace is over the “environment” leaving only
the sub-system defined as A. The n-th order Rényi en-
tropy is defined as

Sn(A) ≡ 1

1− n
ln(Tr[ρ̂nA]) . (2)

The limit n → 1+ is the von Neumann entanglement
entropy, or the first order Rényi entropy. S2 is the sec-
ond order Rényi entropy, and was measured in recent
cold atom experiments [47]. An important goal for fu-
ture work is to estimate the central charge, c, from em-
pirical data. Using the transformation properties of the
energy-momentum tensor and the Ward identities from
CFT, CC established that, to leading order, the Rényi
entropy scales linearly with the logarithm of the spatial
volume. The constant of proportionality is the central
charge multiplied by a rational that depends on the or-
der of the Rényi entanglement entropy and the boundary
conditions:

Sn(Ns) =

{
Kn + c(n+1)

6n ln(Ns) for PBC

K ′n + c(n+1)
12n ln(Ns) for OBC.

(3)

The intercept is non-universal and different in the four
situations considered here.

The calculation of Sn can be performed [51] using
blocking (coarse-graining) methods [35–38]. In this
work we used the density matrix renormalization group
(DMRG) with matrix product states (MPS), as well as
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exact blocking formulas [35–37, 41] with the tensor renor-
malization group method (TRG), and the only approxi-
mation in these methods consists of truncating the num-
ber of states (called Dbond). The errors associated with
this truncation will be discussed later.

III. THE O(2) MODEL

In the following, we consider the classical O(2) model
on a Ns×Nτ rectangular lattice with sites labeled (x, t).
This is a generalization of the Ising model where the local
spin is allowed to take values on a circle, making an angle
θ with respect to some direction of reference. This angle
can be interpreted as the phase of a complex field and
the model has an exact charge conjugation symmetry,
θ → −θ, interchanging particles and anti-particles. This
symmetry can be broken by adding a chemical potential
µ to the angle gradient [52]. The partition function reads:

Z =
1

2π

∫ ∏
(x,t)

dθ(x,t)e
−S (4)

with

S =− βτ
∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iµ)

− βs
∑
(x,t)

cos(θ(x+1,t) − θ(x,t)). (5)

We use periodic boundary conditions (PBC) or open
boundary conditions (OBC) in space and always PBC
in time. In the following, we define the charge density as

λ ≡ 1

(Ns ×Nτ )

∂ ln(Z)

∂µ
. (6)

We will start with the situation where the relativis-
tic interchangeability between space and time is present
(βs = βτ ), as is typical in lattice gauge theory simula-
tions. Later, we will take the time continuum limit and
switch to the Hamiltonian formulation.

For numerical purposes, and in order to connect the
Hamiltonian formulation to quantum simulators, it is
convenient to introduce discrete degrees of freedom on
the links (bonds) of the lattice. Using Fourier expan-
sions [35, 53, 54], one can show [41, 51] that the partition
function can be expressed in terms of a transfer matrix
Z = Tr[TNτ ] where the matrix elements of T have the
explicit form

T(n1,n2,...,nNs )(n
′
1,n
′
2,...,n

′
Ns

) =∑
ñ1ñ2...ñNs

T
(1,t)
ñNs ñ1n1n′1

T
(2,t)
ñ1ñ2n2n′2...

. . . T
(Ns,t)
ñNs−1ñNsnNsn

′
Ns

, (7)

with

T
(x,t)
ñx−1ñxnxn′x

=
√
Inx(βτ )In′x(βs) exp(µ(nx + n′x))√
Iñx−1

(βs)Iñx(βτ )δñx−1+nx,ñx+n′x
.(8)

When Ns is a power of 2, the traces in the spatial direc-
tions in Eq. (7) can be performed recursively and com-
bined with a truncation of the number of states kept in
the time direction [41, 51]. The accuracy of this tensor
renormalization group method has been tested against
sampling methods [51].

We can interpret TNτ as a density matrix ρ̂ if we nor-
malize by the trace of the matrix. It is important to
understand that the classical spin model described above
can be taken in a limiting form as a quantum model in
one spatial dimension. In the following, we always take
Nτ � Ns and extrapolate to infinite Nτ . This corre-
sponds to the zero temperature limit in the quantum ter-
minology. Finite temperature effects will be discussed in
Sec. V and were considered in Ref. [51].

The SF phase is characterized by a response of the
charge density, λ, to a change in the chemical poten-
tial. This is illustrated in Refs. [41, 54]. In contrast, in
the Mott phases, the charge density keeps a fixed integer
value as we increase µ. This lack of response is some-
what puzzling in the functional integral formulation and
is often called the “Silver blaze” phenomenon [55] in the
context of finite temperature QCD. Another characteri-
zation of the two phases is by the scaling of the Rényi
entropy as a function of the volume of space.

In the following we focus on two cases for two different
relationships between the spatial and temporal couplings.
We consider β = 0.1, µ ' 3 (case 1), and β = 2, µ = 0
(case 2). Both of these situations are considered in the
limits of isotropic coupling (βs = βτ ), and anisotropic
coupling (βsβτ = const. with βτ →∞ and a→ 0, where
a is the temporal lattice spacing). In case 1 the SF tran-
sition is driven by an increase in the chemical potential
at fixed β. This is the transition driven by fluctuations
in density. For case 2 the transition is driven by the pres-
ence of vortices and is the Berezinskii-Kosterlitz-Thouless
(BKT) transition.

A. Isotropic Coupling

In this section we consider the case where the cou-
pling in space and time are the same. This is a classical
statistical two-dimensional spin system. Using TRG we
can block a (Euclidean) time slice of the lattice and con-
sider it as a transfer matrix. From it we can calculate a
“zero-temperature” density matrix by taking Nτ � Ns
(typically Nτ ≈ 220Ns in practice, although even larger
sizes may be used). Then, from the density matrix one
can make the reduced density matrix and calculate the
Rényi entropy of the desired order.

The values of S1 and S2 are shown in Fig. 1 for Ns =
4, 8, 16, and 32, for PBC and OBC. These results are
compared with the leading CFT prediction of Eq. (3)
by just fitting the intercept with the CFT slope fixed.
For isotropic calculations the TRG calculations kept up
to 250 states. The figure shows that the discrepancies
are rather small and most visible for S2 with OBC for
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FIG. 1. (a) The second order (S2) and first order Rényi (S1)
entropies for case 1, µ = 2.99 and βs = βτ = 0.1, both PBC
and OBC. The solid, black lines are linear fits to the data,
and the dashed, blue (online) lines are fits of the intercept
with the CFT slopes. (b) Same quantities for case 2, µ = 0
and βs = βτ = 2.
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β
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FIG. 2. Second order Rényi entropy in the β-µ plane for
Ns = 4 showing the various lobes of charge densities. λ = 0, 1,
and 2 are the prominent bright regions stemming from the
β = 0 axis.

case 1. In case 2, the discrepancies are slightly more
pronounced. In all cases, the discrepancies are due to
subleading corrections not taken into account in the fits,
rather than the small numerical errors.

Fig. 2 gives the values of S2 for Ns = 4 across a region
of the β-µ plane. This figure shows lobes corresponding
to a fixed charge density. The largest and most prominent
is the λ = 0 lobe, followed by much thinner λ = 1 lobe
above. The lobes continue as long as the truncation on
the number of states used in the TRG calculation can
support the charge density. Fig. 2 also shows 3 plateaus

in the SF regions between each Mott lobe. These plateaus
were investigated and related to the charge density in the
isotropic limit in [51]. In the next section we consider the
time-continuum limit of the classical O(2) model and how
the phase diagrams transforms through taking that limit.

B. Anisotropic Coupling

We now proceed to take the time continuum limit.
This can be achieved by taking βτ very large while keep-
ing constant the product βsβτ , and keeping µβτ tuned
to the desired charge density. For case 1, the limit of
the chemical potential must be done carefully in order
to maintain a fixed charge density corresponding to half-
filling. For small volumes half-filling takes place around
µβτ = 0.5 as βτ → ∞, but not all the data collected
for larger volumes was necessarily done at that parame-
ter specification, and instead the parameters were tuned
to maintain half-filling. The time continuum limit in
the tensor formulation defines [41] a rotor Hamiltonian
[56, 57]:

Ĥ =
U

2

∑
x

L̂2
x − µ̃

∑
x

L̂x − 2J
∑
〈xy〉

cos(θ̂x − θ̂y) , (9)

with [L̂x, e
iθ̂y ] = δxyeiθ̂y . It’s possible to truncate to

finite integer spin and approximate these commutation
relations [41]. The normalization has been chosen in such
a way that the coupling constants in the Bose-Hubbard
model used in Ref. [47], and here in the O(2) model are
the same: βsβτ ≡ 2J/U , and µβτ ≡ µ̃/U .

In the following we primarily use the spin-1 approx-
imation which can also be implemented in the original
isotropic formulation by setting the tensor elements in
Eq. (8) to zero for space and time tensor indices strictly
larger than 1 in absolute value (so only 3 states remain).
The Hamiltonian is then a spin-1 XY model with a chem-
ical potential and an ion anisotropy. In addition, for large
enough chemical potential, the n = −1 component de-
couples and we are approximately left with a spin-1/2
XY model. Furthermore, for µ̃ = U/2 � J , there is an
approximate connection with the Bose-Hubbard model

H =
U

2

∑
x

nx(nx − 1)− J
∑
x

(a†xax+1 + h.c.). (10)

The Hamiltonian in Eq. (9) is never explicitly used in the
blocking procedure with TRG. In practice, the TRG ten-
sors used are the same, however the coupling constants
that appear in the local tensor’s definition are tuned to
reflect the scenario under consideration. Again, using the
TRG the same way, one calculates the Rényi entropy for
an approximately zero-temperature situation. The only
minor change is that due to the increased coupling in the
time direction, Nτ needs to be adjusted to compensate
the smaller lattice spacing. This means increasing Nτ
even more, a facile task while using a blocking method.
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FIG. 3. The first order (orange online) and second (blue on-
line) order Rényi entropy as a function of µ̃/U in the region
around case 1. (a), (b) Entropies for Ns = 4 and Ns = 8,
respectively, with OBC. (c), (d) Entropies for Ns = 4 and
Ns = 8, respectively, with PBC. The second Rényi entropy
maintains a local minimum around µ̃/U = 0.5 for all cases,
however the PBC data for the first Rényi entropy has a max-
imum. For this data βτ = 500 and Dbond = 101.

We show slices of the Rényi entropy in the region of case
1 for Ns = 4 and 8, OBC, in Fig. 3. A more extensive
plot of S2 for the O(2) model in the time-continuum limit
can be found in [46] for a large range of couplings along
with a comparison to the Bose-Hubbard Model.

In order to check the TRG calculations of Sn in the
time continuum limit (Eq. (9)), we have used DMRG [38]
which has been used to calculate the ground state entan-
glement entropy and Rényi entropy for similar Hamilto-
nians [58–60]. Calculations with MPS optimization [39]
have been performed using the ITensor C++ library [61].
We run enough sweeps for the entropy to converge to at
least 10−8, and a large number of states, up to 1500, was
kept so that the truncation error is less than 10−10. The
comparison of the results with the two methods showed
excellent agreement at small volume (typically 9 digits for
Ns = 4) but the discrepancies increased with the volume
(typically 3 digits agreement for Ns = 32). We believe
that the DMRG results are more accurate because firstly,
it can keep many more states than the TRG by using
sparse linear algebra libraries. Secondly, the truncations
are made step-by-step trying to maximize the entan-
glement entropy. Finally, DMRG uses an environment
sweep method which optimizes the ground state wave-
function iteratively. For these reasons, we have used the
DMRG results for the fits that follow.

case 1 isotropic anisotropic DMRG c = 1 CFT

S1 PBC 0.319 0.311 0.327 0.3̄

S2 PBC 0.273 0.265 0.267 0.25

S1 OBC 0.207 0.208 0.195 0.16̄

S2 OBC 0.182 0.152 0.168 0.125

case 2 isotropic anisotropic DMRG c = 1 CFT

S1 PBC 0.328 0.296 0.329 0.3̄

S2 PBC 0.262 0.229 0.250 0.25

S1 OBC 0.179 0.152 0.159 0.16̄

S2 OBC 0.165 0.148 0.140 0.125

TABLE I. Slopes of the Rényi entropies using the leading-
order linear fit. The fits were done using the same volumes
used in the TRG calculations: Ns = 2`. For data at these
volumes oscillations do not appear; oscillations occur between
volumes: Ns mod 4 = 0, and Ns mod 4 = 2.

IV. FITS TO Sn

In this section we give some results for fits to the
isotropic and anisotropic data, as well as for fits to the
DMRG data. The primary deviations from the leading
order linear behavior of the Rényi entropy come from
finite volume effects and parity oscillations. These devi-
ations were found most prominently in OBC data, and
the second order Rényi entropy. Oscillations were found
between sizes Ns mod 4 = 0 and Ns mod 4 = 2, al-
though in case 1 S1 with PBC had none, as well as S1 in
case 2. Corrections to the leading-order CFT behavior
to account for these oscillations have been conjectured
[43–45], and we check their validity for the anisotropic
O(2) model. In addition, non-oscillatory finite volume
corrections have been derived [62] and in the following
we attempt to take all these corrections into account in
order to fit the data as best as possible.

Initially, all the data was fit to the leading order CFT
prediction (Eq. (3)), with the slope and intercept as the
two free parameters. This was done for spatial volumes
which matched the TRG blocking volumes, e.g. Ns = 2`,
and since these sizes are multiples of 4, no oscillations
were present. These fits were done for both the DMRG
and TRG data in both the isotropic and anisotropic lim-
its. The results for the slope fits are reported in Table I
for all cases considered.

For the two cases considered here, we tried various
fits that attempted to incorporate subleading corrections.
We attempted fits with four or five free parameters.
These included corrections ∝ 1/Ns, 1/N2

s , 1/ ln(Ns) and
1/ ln2(Ns). To judge the quality of the fits we compared
the average relative error between fits,

(Relative Error)2 =
1

N

N∑
i=1

(
yi − f(xi)

yi

)2

(11)

with yi the dependent data and f(xi) the fitting func-
tion evaluated at the independent data. This measure is
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Sn pn An from fit An with c = 1

S1 PBC 2.315 0.3338 0.3̄

S2 PBC 0.981 0.2525 0.25

S1 OBC 0.901 0.1663 0.16̄

S2 OBC 0.443 0.1246 0.125

TABLE II. Values for An, and pn for βsβτ = 0.01, µβτ = 0.5,
from the least-squares fits to the DMRG data up to Ns = 64
corresponding to Fig. 4.

convenient since the error is dimensionless; in addition,
a χ2 measure of error would depend upon the unknown
DMRG error bars and fitting with uncertainties in arbi-
trary units gives a relatively useless estimate of the fit
quality. The relative errors associated with the fits were
never greater than 10−3, and never less than 10−7. For
systems with subsystems of size l, we considered a fit of
the form

Sn(Ns, l) = An ln

{
Ns sin

[
πl

Ns

]}
+B (12)

+
C

Npn
s

cos(πl)

∣∣∣∣sin [ πlNs
]∣∣∣∣−pn

+ fn(Ns, l)

with fn a function to take into account additional correc-
tions, and An, B, C, and pn are fit parameters. However,
we focused on data with l = Ns/2. We found the best fit
results by excluding data with l < Ns/2 and l > Ns/2 for
small Ns and at larger Ns we found fits preferred data
near l ≈ Ns/2, resulting in data which resembled a “fan
with a handle” (see [46]).

For case 1 the best fits included corrections like f ∝
1/N2

s and 1/ ln2(Ns). We found almost identical rela-
tive errors between corrections 1/N2

s and 1/ ln2(Ns). For
case 2, the OBC data had the least error with corrections
∝ 1/Ns while the PBC data had the least error with cor-
rections ∝ 1/N2

s . For the oscillating term, the various pn
are expected to follow special relations [44] (see below).
For some fits, there were no oscillations present and the
fits drove pn very large. In these cases we replaced the
πNs/2 in the cosine by πNs, so as to set it to unity by
hand, and assumed a correction ∝ N−pns . The fits were
done by non-linear least-squares minimization.

The results are shown in Fig. 4 for case 1. The values
of the slopes, An, for both S1 and S2 are plotted in Fig. 5
with the slope value predicted from CFT surrounded by
a band representing a 1% deviation from the CFT value.
The values for An, and pn using all the data points up
to Ns = 64 are shown in Table II. Notice the good agree-
ment with the predicted relations [44] pOBC

1 = 2pOBC
2 ,

pPBC
1 = 2pPBC

2 and pPBC
n = 2pOBC

n . The fit results for
case 2 are shown in Fig. 6. As can be seen, the oscilla-
tions are very small, if at all, as compared to case 1. Also
in contrast, case 2 did not yield the special relationships
between the pn exponents that did occur for case 1. The
An values when fitting to all the data up to Ns = 64 are
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FIG. 4. The first order and second order Rényi entropy scal-
ing with system size for βsβτ = 0.01, µβτ = 0.5 in the time
continuum limit calculated using DMRG. (a), (b) The first
order Rényi entropy with OBC and PBC respectively. (c),
(d) The second order Rényi entropy with OBC and PBC re-
spectively.
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FIG. 5. The An for βsβτ = 0.01, µβτ = 0.5 with OBC is
plotted versus the maximal size of the lattice used to fit the
data. The horizontal line is the CFT prediction with c = 1
with a region around representing a ±1% deviation. (a) The
first order Rényi entropy. (b) The second order Rényi entropy.

found in Table III. In both case 1 and case 2 the first
order Rényi (von Neumann) entropy with PBC possesses
no oscillations, which is in agreement with what is known
[43]. These results suggest that both of these different
regions of the phase diagram are conformal and approx-
imately c = 1. If either of these two regimes could be
quantum simulated and experimentally realized, it may
be possible to measure the central charge. We will briefly
discuss the feasibility of this prospect in the next section.
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FIG. 6. The first order and second order Rényi entropy scaling
with system size for βsβτ = 4, µβτ = 0 in the time continuum
limit calculated using DMRG. (a), (b) The first order Rényi
entropy with OBC and PBC respectively. (c), (d) The second
order Rényi entropy with OBC and PBC respectively.

Sn An from fit An with c = 1

S1 PBC 0.3337 0.3̄

S2 PBC 0.2500 0.25

S1 OBC 0.1654 0.16̄

S2 OBC 0.1278 0.125

TABLE III. Values for An for βsβτ = 4, µβτ = 0, from the
least-squares fits to the DMRG data up to Ns = 64 corre-
sponding to Fig. 6.

V. PROSPECT FOR QUANTUM SIMULATIONS

To better understand the possibility of quantum sim-
ulating the O(2) model it is important to find a suitable
condensed matter model to relate to. We considered a
single species Bose-Hubbard quantum Hamiltonian (Eq.
(10)) in a region of the phase diagram where the two
models are essentially identical: µ̃ ≈ U/2� J , i.e. simi-
lar to case 1. While the hopping parameter is very small
compared to the on-site repulsion, the chain is only half-
filled, allowing the superfluid regime to be probed.

We considered the second order Rényi entropy for the
Bose-Hubbard model for J/U = 0.005 and J/U = 0.1
with OBC. We did runs using DMRG across various sys-
tem sizes such that 4 ≤ Ns ≤ 64, and sub-system sizes
such that 1 ≤ l ≤ Ns − 1. To illuminate the legiti-
macy of the comparison between the two models we have
plotted S2 and A2 for both the O(2) model in the time-
continuum limit for case 1, and the Bose-Hubbard model
with J/U = 0.005 in Fig. 7. As one can see in Fig. 7
the BH model in this limit is almost identical to case 1 of
the O(2) model. Changing J/U to 0.1 increases the dis-
crepancy, but the models continue to agree quantitatively

1 2 3 4
ln[Ns]

0.2

0.4

0.6

0.8

S
2

Spin-1 O(2)

Bose-Hubbard

10 20 30 40 50 60 70
Ns,max

0.121

0.123

0.125

0.127

A
2

Spin-1 O(2)

Bose-Hubbard

FIG. 7. A comparison between the Bose-Hubbard model and
the O(2) model at half-filling and J/U = 0.005 with OBC.
(top) S2 for the two models. The data lie almost on top of
each other, and there are two solid black lines fitting the two
data sets which are essentially indistinguishable. (bottom)
The value of A2 versus the maximum size of the lattice used
to extract the value of A2. The horizontal line represents
the CFT prediction of 1/8 with a band representing a ±1%
deviation.

well, especially for smaller volumes. The exploratory fits
and trials can be found in [46]. A Bose-Hubbard model
with small spatial volumes and µ = U/2 � J/U = 0.1
appears as a potential candidate for quantum simulat-
ing the O(2) model and experimentally measuring the
central charge. The possibility of measuring the central
charge with cold atoms trapped in optical lattices was
investigated in Ref. [46].

Finite temperature effects

For quantum simulation, while most of the calculations
were done at T = 0, finite temperature effects should be
considered. Here we take k, the Boltzmann constant,
equal to unity. While working on a two-dimensional Eu-
clidean lattice, we must relate the temporal extent to the
physical temperature. This is done through the relation

β =
1

T
= Nτa (13)

with β the inverse physical temperature, not to be con-
fused with the spatial and temporal couplings βs and βτ .
This relation can be derived with simple quantum statis-
tical mechanics arguments. To take the time continuum
limit, we allowed βτ → ∞ and a → 0. This allowed us
to set the scale with the quantity U ≡ 1/βτa. With this
definition we have

β =
1

T
=

Nτ
βτU

=
βsNτ

2J
. (14)
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This relates a number of important quantities. It re-
lates the spatial and temporal coupling on the Euclidean
lattice to the physical temperature of a quantum Hamil-
tonian, as well as the number of temporal sites on the
lattice. In addition it relates the hopping parameter, J ,
and the on-site repulsion, U , to the physical temperature
and lattice couplings.

To verify this relation between the classical picture
of a two-dimensional lattice and its quantum counter-
part in one less dimension we again compared time-
continuum TRG results with DMRG results for finite-
temperature. For TRG we merely considered temporal
lattice sizes which were not as great as before for the
zero-temperature analysis and tuned the couplings for
the time-continuum limit. The DMRG analysis used a
thermal density matrix (as opposed to using the ground
state) to compute the Rényi and entanglement entropies
[63–65]. In Fig. 8 one can see the agreement between the
DMRG calculations and the TRG ones in the case of the
O(2) model. This Figure also demonstrates the effect the
thermal entropy has on the entanglement entropy as the
temperature increases. The peaks and valleys of the en-
tanglement entropy become smoothed out and while the
boundaries remain at approximately ln(2), the half-filling
valley increases.

For systems at half-filling, i.e. the central peak (valley)
like in Fig. 3 and 8, the CC scaling can be well fit to a
functional form

Sn(Ns) = An ln(Ns) +B (15)

+
C

Npn
s

cos(πNs/2) + ENs + f(Ns),

that is, adding a term linear in Ns takes into account the
finite temperature effects. For fits to a general subsystem
size at fixed Ns, we find a term linear in l fits the data
well,

Sn(Ns, l) = An ln

{
4(Ns + 1)

π
sin

[
π(2l + 1)

2(Ns + 1)

]}
+B

(16)

+
C

Npn
s

sin

[
π(2l + 1)

2

] ∣∣∣∣sin [ π(2l + 1)

2(Ns + 1)

]∣∣∣∣−pn
+Dl + fn(Ns, l).

This linear term can be used to subtract off finite-
temperature effects [49], however we find additional cor-
rections are necessary to maintain the original T = 0 fit
parameters. Examples of fits done with these functional
forms for various temperatures can be found in [46].

VI. CONCLUSION

We have argued that finite-size scaling of the entangle-
ment entropy may provide a sensitive tool for identifying
conformal behavior in a system. It may complement the
techniques currently in use in the lattice gauge theory

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βτµ

0.0

0.2

0.4

0.6

0.8

S
2

β = 65

β = 131

β = 262

FIG. 8. The second order Rényi entropy as a function of the
chemical potential, µ̃ = βτµ, for Ns = 4 with J/U = 0.1.
The solid lines are the DMRG data and the circles are the
TRG data. We see the effects of a finite temperature on S2

is to smooth out the peaks and valleys. As the temperature
increases the thermal entropy dominates the Rényi entropy.
The inverse temperature, β, was calculated here with U = 1
and βτ = 500, and Dbond = 201.

community for studying models in the context of physics
Beyond the Standard Model. Such models are harder to
study on the lattice than QCD, because the running of
the coupling is slow and the relevant physics may be eas-
ily masked by lattice artifacts (e.g. finite lattice spacing,
finite volume).

We have calculated the Rényi entropy for the classi-
cal O(2) model in the isotropic coupling limit, as well as
in the anisotropic coupling limit with a quantum Hamil-
tonian. From fits to the Rényi entropy we have esti-
mated the central charge. We found that this model can
be mapped to a single-species Bose-Hubbard model in a
particular region of the phase diagram and their Rényi
entropies are quantitatively similar allowing for the pos-
sibility of quantum simulating the O(2) model and ob-
serving the Calabrese-Cardy scaling during simulation.
In addition we have considered finite-temperature effects
on the Rényi entropy, and found fitting functions which
match the data for S2 well, with scaling in Ns and in
subsystem size. These additional fits involved including
a term which is linear in either the subsystem size, l, or
the system size, Ns.

It would be interesting to study the scaling of the
Rényi entropy of the O(3) non-linear sigma model with
finite chemical potential in 1+1 dimensions. This model
is known to have asymptotic scaling in the continuum
limit leading to a non-zero mass-gap, as well as meron
(instanton) solutions due to the O(2) sub-group. The
phase diagram in the time-continuum limit has a similar
form [66] to the O(2) model considered here, and could
be investigated in a similar fashion.

In addition it would be interesting to study the effects
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of a weak gauge-coupling to the O(2) spins (as discussed
in [42, 67]). This would be scalar electrodynamics in a
perturbative limit of weak gauge coupling. Monitoring
the entanglement entropy as one takes the limit of zero
gauge coupling would give information about the sym-
metries for the phases of scalar electrodynamics, and the
passage between the two models.
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