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We focus on the special situation of D = 2J in the general spin-S Blume–Capel model on a square lattice. Under an
infinitesimal external magnetic field, the phase transition behaviors due to the thermal fluctuations are investigated by the
newly developed tensor renormalization group method. We clearly demonstrate the phase transition process: in the case
of an integer spin-S, there are S first-order phase transitions with the stepwise magnetizations M ¼ S; S � 1; . . . ; 0; in the
case of a half-odd integer spin-S, there are S − 1=2 first-order phase transitions with corresponding M ¼ S; S � 1; . . . ;
1=2 in addition to one continuous phase transition due to spin-flip Z2 symmetry breaking. At low temperatures, all first-
order phase transitions are accompanied by the successive disappearance of the spin-component pairs (±s); furthermore,
the transition temperature for the nth first-order phase transition is the same, independent of the value of the spin-S. In
the absence of a magnetic field, a visualization parameter characterizing the intrinsic degeneracy of the different phases
provides a different reference for the phase transition process.

1. Introduction

The Blume–Capel model1) and the extended Blume–
Emery–Griffiths model2) have attracted general interest over
several decades. The Monte Carlo algorithm,3–5) conformal
invariance,4) finite-size scaling6) and mean-field approxima-
tion7,8) demonstrate the rich phase diagrams based on this
model. The richness originates not only from spin-flip Z2

symmetry breaking, but also from density fluctuations with
S þ 1 (for integer S) or S þ 1=2 (for half-odd integer S)
possible values7) for S2i . Furthermore, these models give a
characterization for experimental 3He–4He mixtures9,10) and
metamagnets,11) which inspired the vector version12,13) of
these models. The introduction of bond randomness14,15)

further enriches the phase transition discussion.
The Hamiltonian of the Blume–Capel model1) with a

general spin-S is

H ¼ �J
X
hi; ji

SiSj þD
X
i

S2i � h
X
i

Szi ; ð1Þ

where the spin variable S takes 2S þ 1 values ð�S;
�S þ 1; . . . ; S � 1; SÞ. J is the coupling constant, D is the
strength of the single-ion anisotropy, and h is the magnetic
field. The sum of the first term runs over all the nearest
neighbors.

Firstly, we consider the case of h ¼ 0. When D ¼ 0, this
model is reduced to the classical Ising model. When D
approaches positive infinity, the energy-favorable state is
the one with the full occupation of the smallest spin
component. For the integer spin cases, the component is
S ¼ 0. For the half-odd integer cases, the component is
S ¼ �1=2.

If we look at the Hamiltonian of any bond linking two sites
i; j, then we have

Hij ¼ �JSiSj þDðS2i þ S2j Þ=q: ð2Þ
Here, q is the coordination number, which depends on the
lattice structure. This formula can be rewritten as

Hij ¼ JðSi � SjÞ2=2 þ ðD=q � J=2ÞðS2i þ S2j Þ; ð3Þ

which leads to the following conclusions for the ferromag-
netic coupling (J > 0): when D > qJ=2, the configuration
of the ground state is Si ¼ Sj ¼ 0 (integer spin) and Si ¼
Sj ¼ �1=2 (depending on the spontaneous breaking of the
half-odd integer spin), respectively, for the integer and half-
odd spin-S cases; when D < qJ=2, the configuration of the
ground state is Si ¼ Sj ¼ maxðSÞ for any spin-S case.

As a result, we have a special situation, i.e., D ¼ qJ=2,
where the ground state is Si ¼ Sj with (2S þ 1)-fold
degeneracy. If An infinitesimal field h is applied, then the
ground-state degeneracy will be lifted. The positive infin-
itesimal h makes the system enter the ground state with
Si ¼ Sj ¼ maxðSÞ as in the case of D < qJ=2, h ¼ 0.

Without loss of generality, we focus on a square lattice
hereafter. Then, q ¼ 4 and D ¼ 2J are the special parameters.
The phase boundary of the square lattice3,4,6,8) ends at
ðT=J; D=JÞ ¼ ð0; 2Þ, i.e., the transition temperature is Tt ¼ 0

for the general spin cases when h ¼ 0, D ¼ 2J.
Motivated by the special parameter point and curiosity

about how the phase boundary approaches the end point,
we calculate the thermodynamic behaviors of the model
described by Eq. (1). Using the recently developed tensor
renormalization group algorithm,16) this work demonstrates
and visualizes the phase transition process in terms of the
common and special physical quantities.

For a classical lattice model with local interactions, the
partition function can be represented as a fourth-order tensor
product,17)

Z ¼ Tr
Y
i

Tliriuidi ; ð4Þ

where i runs over all the lattice sites and Tr denotes the
summation over all bond indices. The local tensor T is
defined at each lattice site as shown in Fig. 1, and the indices
l, r, u, d mean the left, right, up, and down directions,
respectively. Here, the initial tensor T is an order-4 tensor due
to the four indices. The initial dimension d0 ¼ ð2S þ 1Þ of
each order is the degree of freedom for the spin. Detailed
information about the construction of the tensor can be found
in Refs. 17 and 18.
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Tliriuidi ¼
X
�

W�liW�riW�uiW�di : ð5Þ

W originates from the decomposition of the bond matrix
ASiSj ¼ e��HSiSj , i.e., A ¼ WWy. Here,

HSiSj ¼ �JSiSj þDðS2i þ S2j Þ=q � hðSi þ SjÞ=q: ð6Þ
To contract the tensor network, i.e., trace over all sites, we

face the problem of the exponentially increasing dimension
of each order of the tensor. The bond dimensions of the nth
and (n � 1)th contractions satisfy dn ¼ d2n�1. The contraction
process rapidly makes the dimension inaccessible. In 2007,
Levin and Nave proposed a cutoff scheme19) based on
singular value decomposition (SVD) that uses an affordable
cutoff dimension d to obtain a good approximation for the
partition function, by which the thermodynamic properties of
the system can consequently be obtained.

Recently, we proposed a novel coarse-graining tensor
renormalization group (TRG) algorithm based on high-order
singular value decomposition (HOSVD),20,21) abbreviated to
HOTRG, which provides an accurate but low-computational-
cost technique for studying two- or three-dimensional (3D)
lattice models. The coarse-graining procedure consists of
iteratively replacing blocks of size two by a single site by
using HOSVD along the horizontal (x-axis) and vertical (y-
axis) directions alternately.

The following results are all from the newly developed
HOTRG scheme. Hereafter, the coupling constant J is used
as the energy unit and kB is set as 1. In the calculation of the
magnetization and the occupation number, h is taken as
10�10 in Eq. (1) for the preferential symmetry breaking of the
spin pairs (�s) and computational stability. The infinitesimal
h ensures the correspondence with the case of h ¼ 0, D ¼
2J � �. Here, ϵ is a positive infinitesimal number.

The system size is 2Ns and we fix Ns ¼ 40 for the
calculation of the thermodynamic physical quantities. How-
ever, h is fixed at 0 and Ns takes different values for the
calculation of the visualization parameter22) depending on
the state degeneracy, which will be addressed in Sect. 4.
The periodic boundary condition is adopted in the entire
numerical calculation.

In the following, we will discuss the results for the typical
integer cases of S ¼ 1; 2 in Sect. 2 and the half-odd integer
cases of S ¼ 3=2; 5=2 in Sect. 3. Then we analyze the
visualization parameter of the phase transition in Sect. 4.
Finally, we give a conclusion.

2. Integer Cases: S ¼ 1; 2

In the case of S ¼ 1, there are three possible spin values,

�1; 0, for each spin variable. A tricritical point exists,
enriching the phase diagram.

In the limit of infinite D, the energy-favorable state is the
full occupation of S ¼ 0, denoted as NðS ¼ 0Þ ¼ 1 per site.
We can name S ¼ 0 as the vacancy or hole, and the state full
of holes is simply the hole condensed phase, whose quantum
correspondence is the one-dimensional S ¼ 1 quantum model
with single-ion anisotropy in our previous papers.23,24) The
hole condensed states also emerge in the other general integer
spin-S cases.

As shown in Fig. 2, the system undergoes first-order phase
transitions accompanying the emergence of the hole
condensed phase as the temperature varies. The magnetiza-
tion jumps from 1 to 0 at a location consistent with the kink
of the occupation number of the pair NðS ¼ �1Þ. The
transition point is Tt ¼ 0:096. For the plateau of the
magnetization M ¼ 0, the starting point corresponds to the
condensation of the holes with the disappearance of the pair
S ¼ �1. With further increasing temperature, the components
S ¼ �1 return to the system with equal-weight occupation,
and the system enters the paramagnetic state with magnet-
ization M ¼ 0. In the limit of the high temperature, the
occupation numbers of the three different components
S ¼ 1; 0;�1 all become 1=3.

For the case of S ¼ 2, there are five possible spin values,
0;�1;�2, for the spin variable. Compared with the case
of S ¼ 1, there is one more possible pair, S ¼ �2, which
induces one more jump of the magnetization from M ¼ 2 to
1. The system undergoes two first-order phase transitions
with increasing temperature.

The first plateau M ¼ 2 corresponds to the full occupation
of S ¼ 2 from the breaking of the pair S ¼ �2 due to the
infinitesimal magnetic field h. As shown in Fig. 3, the second
plateau M ¼ 1 emerges with the disappearance of S ¼ �2
and the full occupation of S ¼ 1 from the breaking of the pair
S ¼ �1. The second jump of the magnetization occurs with
the hole condensed phase NðS ¼ 0Þ ¼ 0. With further
increasing temperature, the occupation of the hole decreases
continuously. The degrees of freedom S ¼ �1 and �2
gradually return to the system. NðS ¼ 0Þ þ NðS ¼ �1Þ ’ 1

holds up to a high temperature. Accompanying the successive
disappearances of S ¼ �2 and �1, the two transition points
are located at Tt1 ¼ 0:096 and Tt2 ¼ 0:305, respectively.

T
l r

u

d

Fig. 1. Graphical representation of the tensor network (left) and the fourth-
order tensor defined at each site (right).

Fig. 2. (Color online) Temperature dependences of the magnetization
(black lines) and occupation number NðS ¼ 0Þ (red lines, light gray line).
Here, S ¼ 1, D ¼ 2J, Ns ¼ 40, d ¼ 30, h ¼ 10�10.
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3. Half-Odd Cases: S ¼ 3=2; 5=2

For S ¼ 3=2, there are four possible spin values, �3=2;
�1=2, for each spin variable.

Similar to the case of S ¼ 1, the system breaks into the
state with M ¼ 3=2 due to the infinitesimal h. The first jump
from M ¼ 3=2 to 1=2 exhibits competition of the occupation
of two pairs between S ¼ �3=2 and �1=2. The first-order
phase transition changes the full occupation from S ¼ 3=2
to 1=2.

When the temperature increases further, an Ising-like
continuous phase transition due to spin-flip Z2 symmetry
breaking occurs. From the behaviors of the magnetization
shown in Fig. 4, the two transition points are located at
Tt1 ¼ 0:096 and Tt2 ¼ 0:649. The location of Tt2 is close to
the data shown in Fig. 2 in Ref. 4.

A similar discussion is applied to the case of S ¼ 5=2,
where there are six possible spin values, �1=2;�3=2;�5=2,
for each spin variable.

The first two jumps in the magnetization correspond to
first-order phase transitions. The successive symmetry break-
ing of the pairs (�s) is clearly shown in the profile of the
occupation number NðS ¼ �3=2Þ. At the first plateau M ¼
5=2, the degrees of freedom S ¼ ð�3=2;�1=2Þ disappear.

With increasing temperature, the first jump of M and N
indicates the disappearance of S ¼ �5=2 and the full
occupation of S ¼ �3=2. Then the second jump of M and
N represents the ensuing replacement of S ¼ �3=2 by S ¼
�1=2 as shown in Fig. 5. The symmetry breaking of the
spin pair S ¼ �1=2 due to magnetic field h results in
NðS ¼ 1=2Þ ¼ 1.

However, with further increasing temperature, M decreases
to 0 continuously, and the system enters the para-
magnetic phase. Here, the occupation number NðS ¼ �3=2Þ
increases continuously from 0. The extra calculation shows
that NðS ¼ 1=2Þ ¼ NðS ¼ �1=2Þ and NðS ¼ 3=2Þ ¼ NðS ¼
�3=2Þ in the paramagnetic phase, where NðS ¼ �1=2Þ þ
NðS ¼ �3=2Þ ’ 1 holds up to a high temperature until the
equal weight distribution of all the degrees of freedom in the
high-temperature limit. The three transition points are
Tt1 ¼ 0:096, Tt2 ¼ 0:306, and Tt3 ¼ 0:685.

Reviewing the data for the transition points, we find that
the transition temperature for the 1st first-order phase
transition is fixed at Tt1 ¼ 0:096 for the above four cases
of S ¼ 1; 3=2; 2; 5=2 and the 2nd first-order phase transition
is located at Tt2 ¼ 0:305 (0.306) for S ¼ 2 (5=2).

Let us turn to the principle of the minimal free energy,
F ¼ U � TS. The phase transition occurs during the com-
petition between the internal energy and the entropy.
Assuming that there are two clusters separately filled with
single spin components s; s � 1, the existence of an interface
connecting the two clusters will raise the internal energy.
Simultaneously the entropy is increased as a result of the
larger number of possible configurations. The 1st first-order
phase transition occurs with the global spin-component
replacement of S by S � 1 in each site, and the transition
point is irrelevant of the value of spin-S. A similar discussion
applies to nth first-order phase transition in the low-temper-
ature situation. The same interval between spin components
results in the same internal energy difference. For low
temperatures, the relative Boltzmann weight e���E due to
the variation of the spin components is negligible. As a
consequence, we cannot see appreciable thermal fluctuations,
then a magnetization plateau emerges.

An additional check shows that the position of the 1st first-
order phase transition moves closer to zero temperature with
smaller h. However, the continuous phase transition points

Fig. 3. (Color online) Magnetization (black lines) and occupation number
NðS ¼ �1Þ (red lines, light gray line) as a function of the reduced
temperature T=J. Here, S ¼ 2, D ¼ 2J, Ns ¼ 40, d ¼ 30, h ¼ 10�10.

Fig. 4. (Color online) Temperature dependence of the magnetization
(black lines) and occupation number NðS ¼ �1=2Þ (red lines, light gray
line). Here, S ¼ 3=2, D ¼ 2J, Ns ¼ 40, d ¼ 40, h ¼ 10�10.

Fig. 5. (Color online) Temperature dependence of the magnetization
(black lines) and occupation number NðS ¼ �3=2Þ (red lines, light gray
line). Here, S ¼ 5=2, D ¼ 2J, Ns ¼ 40, d ¼ 40, h ¼ 10�10.
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are insensitive to the magnitude of the infinitesimal h. At
relatively high temperatures, the effect from the infinitesimal
h is negligible. Our results for the continuous phase transition
points, Tt ¼ 0:649; 0:685 for S ¼ 3=2; 5=2, respectively, can
be used as reference data. All 1st first-order phase transitions
will occur at zero temperature for the exact D ¼ 2J, h ¼ 0

situation, which is a spontaneous symmetry-breaking picture
in the thermodynamic limit and exactly demonstrated in
Ref. 8.

Nevertheless, the strength of h does not change the fact
that the corresponding location of the nth first-order phase
transition remains the same, independent of the spin values
at low temperatures although the infinitesimal h shifts the
transition point along the temperature axis. Furthermore, the
novel perspective obtained from the visualization parame-
ter22) also provides qualitative consistency.

4. Visualization Parameter

As was pointed out in Ref. 22, a symmetry-breaking phase
with n degenerate states is represented by a fixed-point
tensor, which is a direct sum of n one-dimensional trivial
tensors. X1 is here introduced to visualize the structure of
fixed-point tensor with the following definition:

X1 ¼

X
ru

Truru

� �2

X
ruld

TruluTldrd

: ð7Þ

X1 is independent of the scale of the tensor, and a graphical
representation is given in Fig. 13 of Ref. 22. X1 directly
represents the information of the degeneracy associated with
the symmetry underlying the Hamiltonian.

For the integer case of S ¼ 2, the visualization X1 bears the
stepwise structure 5; 3; 1 as shown in Fig. 6. The five-fold
degeneracy associated with TZ2

L
TZ2

L
TTRI is represented

by the first plateau with a value of 5. TZ2 corresponds to the
spin flip of the pair (�s) and TTRI originates from the degree
of freedom S ¼ 0. With increasing temperature, the system
undergoes two phase transitions. The first jump of X1 from 5
to 3 indicates the disappearance of TZ2 from S ¼ �2, where
NðS ¼ 1Þ exhibits the step change from 0 to 1. The plateau of
X1 ¼ 3 corresponds to TZ2

L
TTRI referring to S ¼ 0; 1;�1.

With the consequent disappearance of TZ2 from S ¼ �1, the
plateau of X1 ¼ 1 with NðS ¼ 0Þ ¼ 1 occurs.

X1 is used to characterize the degeneracy, which is the
reason why h is fixed at 0 here. The introduction of h lifts
the degeneracy. Even a tiny numerical calculation error will
affect the numerical results for the intrinsic degeneracy. We
choose different system sizes of 2Ns (Ns ¼ 20; 30; 40) for
comparison. With increasing Ns, the transition points move to
the left, corresponding to a lower transition temperature. The
first transition point should be Tt ¼ 0 when D ¼ 2J, h ¼ 0.
On the other hand, a large system size will result in numerical
instability for X1 with more coarse-graining steps, as shown
in Fig. 7. When the symmetry describing the state degener-
acy is not implemented in the construction of the original
tensor, we will face the problem of numerical instability. By
implementing U(1) symmetry in the initial tensor construc-
tion of O(2) model,25) the numerical results with high
precision are obtained. Research on the fixed-point tensor is
still under way.

For the half-odd case of S ¼ 5=2, the visualization X1

bears the stepwise structure 6; 4; 2; 1, as shown in Fig. 7.
The six-fold degeneracy originates from three pairs �5=2;
�3=2;�1=2, corresponding to TZ2

L
TZ2

L
TZ2 . The first

two jumps of X1 represent the two first-order phase
transitions, which are similar to those in the case of S ¼ 2

accompanying the successive disappearance of the two pairs.
The difference lies in the last jump of X1 from 2 to 1, which is
a continuous phase transition with Z2 spin-flip symmetry
breaking. The gap of X1 is 2 for all the first-order phase
transitions and 1 for the last continuous Ising-like phase
transition.

The above discussion leads to the general conclusion that
the visualization parameter X1 bears the stepwise structure
ð2S þ 1; 2S � 1; . . . ; 3; 1Þ for the integer spin S and
ð2S þ 1; 2S � 1; . . . ; 2; 1Þ for the half-odd spin S. It is tricky
to locate the transition point from the jump of X1 due to the
truncation in the coarse-graining process. However, the point
that the integer plateaus of X1 associated with the degeneracy
of the system is intrinsic, which originates from the deep
insight that the fixed-point of the tensor representation
corresponds to the fixed point of the RG flow. This provides
reference to observe the phase transition. By implementing

Fig. 6. (Color online) Stepwise structure of the visualization X1 with three
plateaus ð5; 3; 1Þ as a function of the reduced temperature T=J. Three
different lattice sizes, Ns ¼ 20; 30; 40, are compared. Here, S ¼ 2, D ¼ 2J,
d ¼ 40, h ¼ 0.

Fig. 7. (Color online) Stepwise structure of the visualization X1 with four
plateaus ð6; 4; 2; 1Þ as a function of the reduced temperature T=J. Three
different lattice sizes, Ns ¼ 20; 30; 40, are compared. Here, S ¼ 5=2, D ¼ 2J,
d ¼ 40, h ¼ 0.
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the symmetry in the initial tensor construction, the phase
transition point of ferromagnetic potts models on a simple
cubic lattice identified by X1 can outperform the most recent
Monte Carlo result.26)

5. Conclusion

In summary, we discussed the phase transitions of the
Blume–Capel model on a square lattice using the recently
developed HOTRG. The case of h ¼ 0, D ¼ 2J is a special
situation with high energy degeneracy, where the bond
Hamiltonian has the form of the square sum. When an
infinitesimal h with the same magnitude is applied, at low
temperatures the location of the nth first-order phase
transition is the same, independent of the spin-S. The
positions of the successive phase transitions can be identified
more exactly by increasing the cutoff dimension d. Through
the magnetization and the occupation number of different
spin values, the phase transition behaviors are clearly
demonstrated, and are consistent with the mean-field solu-
tion.8) The visualization parameter X1 associated with the
degeneracy illustrates the successive phase transitions.
Compared with the integer spin-S cases, there is one more
Ising-like continuous phase transition with spin-flip Z2

symmetry breaking for half-odd spin-S cases.
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