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We have developed a different quantum transfer-matrix method to accurately determine thermodynamic
properties of the Hofstadter model. This method resolves a technical problem which is intractable by other
methods and makes the calculation of physical quantities of the Hofstadter model in the thermodynamic limit
at finite temperatures feasible. It is shown that the quantum correction to the de Haas–van Alphen oscillation
of magnetization bears the energy structure of the Hofstadter butterfly. The measurement of this quantum
correction, which can be materialized on the superlattice or cold atom systems, can reveal unambiguously the
Hofstadter fractal energy spectrum.
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The Hofstadter butterfly is the fractal phase diagram of
crystalline electrons in a magnetic field.1,2 This problem is of
particular interest because it is one of the few examples in
physics where the difference between rational and irrational
numbers can be tested by experimental measurements.3–5

However, probing the Hofstadter butterfly is a challenging
problem because a tiny change in the external magnetic field
may give rise to radical reconstructions of the ground state.
Some hints of the Hofstadter butterfly were reported in quan-
tum hall conductivity,5 magnetic transport,6 and microwave7

measurements.
The Hofstadter butterfly results from the interplay be-

tween a uniform magnetic field and a periodic crystal poten-
tial of two-dimensional electron gas. Thirty years ago,
Hofstadter2 computed the energy spectrum of the Harper
equation8 and discovered this fractal butterfly structure as a
function of the magnetic flux per lattice cell �. The Hof-
stadter model has become a paradigm for quantum systems
with singular continuous spectra and nontrivial topological
numbers. This model has been solved by the Bethe ansatz9,10

and exact diagonalization11 methods when � is rational �
= p /q �p and q are mutually prime integers� with relatively
small q.

Previous studies of the Hofstadter model have focused on
the ground state. There was also a discussion on the magne-
tization oscillation with the chemical potential at zero
temperature.12 As the ground-state energy is not an analytic
function of applied magnetic field due to the fractal feature
of spectra, the magnetic susceptibility is not a well-defined
quantity at zero temperature. Thermal fluctuation can smear
the singularity and remove this nonanalytical feature. How-
ever, to study thermodynamic properties at finite tempera-
tures, especially the lattice correction to the quantum oscil-
lation of magnetization as a function of magnetic field, one
has to solve this model for arbitrary �. This is a very chal-
lenging problem since the largest q that can be handled by
the Bethe ansatz or exact diagonalization is generally less
than 1000.

In this Rapid Communication, we propose a different
quantum transfer-matrix method to study thermodynamic
properties of the Hofstadter model on square lattices. This
method avoids direct diagonalization of the Hamiltonian and
allows the thermodynamic limit to be explored directly and

accurately. In Ref. 13, magnetic quantum oscillations were
obtained. We will show that the quantum oscillation of mag-
netization is a susceptive physical quantity to probe the hi-
erarchical structure of the Hofstadter butterfly. The measure-
ment of the quantum oscillation of magnetization reveals
unambiguously the Hofstadter’s fractal energy spectrum.

Let us start by taking the Landau gauge in which the
vector potential to be zero along the x axis. By further taking
the plane-wave expansion along the x axis, we then decouple
the Hofstadter model H into a sum of a series of one-
dimensional Hamiltonian Hk,

H = �
k

Hk, �1�

Hk = �
y

�tck,y+1
† ck,y + tck,y

† ck,y+1 + 2t cos�2�y� − k�ck,y
† ck,y� ,

�2�

where k=2�n /Nx �n=0,1 , . . . ,Nx−1� is the momentum of
electrons along the x axis and Nx is the lattice dimension
along that direction. y is the lattice coordinate of electrons
along the y axis. � is the magnetic flux penetrating each
plaquette.

Given k, the partition function of Hk is defined by

Zk = Tr exp�− �Hk� , �3�

where �=1 /kBT and T is temperature. The partition function
of the whole system is simply a product of Zk for all k.

To evaluate Zk, let us first divide Hk into two parts, Hk
=Hk,even+Hk,odd, where

Hk,odd = �
y

hk,2y−1,

Hk,even = �
y

hk,2y ,

and

hk,y = t�ck,y+1
† ck,y + H.c.� + 2t cos�2�y� − k�ck,y

† ck,y .

The individual terms hk,y in Hk,even or Hk,odd commute with
each other. Thus it is relatively simple to evaluate thermody-
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namic quantities of Hk,even or Hk,odd. To utilize this property,
let us divide � into M equivalent parts �=� /M and apply the
Trotter-Suzuki formula14,15 to decompose Zk as

Zk = Tr�e−�Hk,odde−�Hk,even�M + O��2� . �4�

By inserting completeness identities to the above expression,
we have

Zk = lim
�→0

�
l=1

M

�
y=1

Ny/2

v2y−1,2y
2l−1,2l v2y,2y+1

2l,2l+1 , �5�

where

vy,y+1
l,l+1 = �ny

l ny+1
l �e−�hk,y�ny

l+1ny+1
l+1 	 . �6�

The subscripts represent the lattice positions and the super-
scripts represent the coordinates in the inverse temperature or
Trotter space.

From Eq. �6�, one can define a local transfer operator �
whose matrix elements are given by

�y,y+1
l,l+1 = �ny

l ,1 − ny
l+1�e−�hk,y�1 − ny+1

l ,ny+1
l+1 	 . �7�

An important step in the calculation below is to define this
local transfer matrix using fermion operators. Through a te-
dious calculation, we find that this transfer matrix can be
expressed as an exponent of a quadratic function of fermion
operators,

�y,y+1
l,l+1 = uk,y exp�pk,ydl

†dl+1 + qk,ydl+1
† dl + rk,y�dl

†dl − dl+1
† dl+1�� ,

�8�

where d’s are fermion operators defined in the Trotter space
and coefficients �pk,y ,qk,y ,rk,y� are determined by the follow-
ing equations:

sinh sk,y

sk,y
pk,y = −

�k,y exp��k,y�
�t sinh �k,y

,

sinh sk,y

sk,y
qk,y = −

�k,y exp�− �k,y�
�t sinh �k,y

,

sinh sk,y

sk,y
rk,y = −

�k,y

�t
,

�k,y =−��t cos�2�y�−k�−	 /2�, �k,y =
�k,y
2 +�2t2, uk,y

=−�t sinh �k,y exp��k,y� /�k,y, and sky =
pk,yqk,y +rk,y
2 . 	 is the

chemical potential. In general, for any quadratic Hamil-
tonian, it can be shown that the corresponding local transfer
matrix can be always written as an exponent of a quadratic
function of fermion operators.16

Reversing the order of l and y in Eq. �5�, one can then
re-express the partition function as a product of transfer ma-
trices,

Zk = lim
�→0

Tr�T1,2T2,3 ¯ TN,1� , �9�

where Ty,y+1 are transfer operators defined by

T2y−1,2y = �
l

�2y−1,2y
2l−1,2l ,

T2y,2y+1 = �
l

�2y,2y+1
2l,2l+1 .

Since coefficients �pk,y ,qk,y ,rk,y� do not depend on l, the
above transfer operators are translationally invariant in every
two unit cells along the Trotter direction. Thus we can block
diagonalize these transfer matrices by taking the Fourier
transformation of fermion operators in the Trotter space. Fi-
nally, we find that in the thermodynamic limit Zk can be
expressed as a product of Ny 2
2 matrices given by the
following formula:

Zk = lim
�→0

Tr �
�

�
y

Ny/2

�tk,2y−1
− ���tk,2y

+ �0�� , �10�

where �= �2m+1�� /M �m=1, . . . ,M� is the imaginary fre-
quency. tk,y

� ��� are 2
2 matrices defined by

tk,y
� ��� = uk,y� ak,y

� e−i�bk,y
�

ei�bk,y
 ak,y

 � , �11�

where

ak,y
� =

�k,y cosh �k,y � �k,y sinh �k,y

− �t sinh �k,y
,

bk,y
� =

�k,y exp���k,y�
− �t sinh �k,y

.

Thus the partition function can be obtained simply by
computing the product of a number of 2
2 matrices. This is
a great simplification to the problem, since the computer
time needed scales just linearly with Ny. Furthermore, we
need not store all these transfer matrices in advance. The
computer memory needed in the calculation is very small.
Thus a truly big system with Ny 108 can be handled with-
out any technical obstacle.

From the partition function, one can readily calculate the
free energy of the system F=− 1

� ln Z. The magnetization and
magnetic susceptibility can then be determined numerically
from the first and second derivatives of the free energy with
respect to the applied magnetic field.

In the Landau gauge, the lattice rotational symmetry is
broken. The finite-size effect along the x direction is small.
In the temperature range considered, we find that Nx=50 is
large enough. However, along the y axis, the finite-size effect
is strong. By evaluating the magnetization at T=0.02 by
varying Ny from 500 to 160 000, we found that the results
converge only after Ny is above 50 000. It indicates that in-
deed large lattice systems are needed in order to explore
thermodynamic properties of the Hofstadter model. For
higher temperature, the convergence can be reached with
smaller Ny. For the results shown in Figs. 1 and 2, we take
Nx=50 and Ny =80 000 to ensure convergence. For simplic-
ity, here we only consider the half-filling case, in which the
chemical potential is pinned to 	=0 because of particle-hole
symmetry. In the discussion below, the hopping constant t is
set to 1 and �=0.02.

Figure 1 shows the quantum oscillation of magnetization
at three different temperatures. In the low-field limit, the
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conventional de Haas–van Alphen �dHvA� oscillation is ob-
served. The period of the oscillation ��1 /�� is about 2 con-
sistent with the result obtained from the formula17 ��1 /��
= 4�2

SF
and SF is the Fermi volume. At half filling, SF

=4�2 /2=2�2. However, with increasing �, some subtle
structures appear above the conventional dHvA curve ex-
pected for two-dimensional electron gas in a magnetic field
�see the inset of Fig. 1�. These subtle structures become more
and more pronounced with decreasing temperature. They re-
sult from the lattice correction to the energy spectra.

Thermal fluctuation affects strongly on the line shape of
magnetization. At high temperature, say T=0.1, the fine frac-
tal structure of the Hofstadter butterfly with an energy scale
less than kBT is smeared out by thermal fluctuation. Only the
conventional dHvA oscillation survives, except in the high-
field limit. However, at low temperature, say T=0.02, the
fine structures of the Hofstadter butterfly with energy scales

comparable to kBT will begin to influence the magnetic re-
sponse of the system. It yields the sharp peaks or dips ob-
served in the magnetization curve in high fields. By further
reducing temperature, we found that more and more peaks
and dips, even in the low-field range, will emerge from the
dHvA background.

Around each sharp peak or dip, there is a change between
diamagnetism and paramagnetism with increasing tempera-
ture. For example, around �0.3, the magnetization de-
creases with increasing � at T=0.02 and the system is dia-
magnetic; whereas at T=0.1, the magnetization increases
with � and the system is paramagnetic. This change from
paramagnetism to diamagnetism is apparently due to the
change in energy resolution since the energy spectrum is
unchanged. It is a manifestation of the fractal structure of the
Hofstadter butterfly.

Figure 2 shows the field dependence of magnetic suscep-
tibility � for � between 0.27 and 0.4 at T=0.1 and 0.02. At
high temperature, T=0.1, � is paramagnetic. However, at
low temperature, T=0.02, � oscillates strongly with �. It
shows a series of local maxima and minima, at which � is
positive �paramagnetic� and negative �diamagnetic�, respec-
tively. These extremes appear when the magnetic flux takes
some rational values �= p /q �see the rational numbers given
in Fig. 2�. The maxima and minima correspond to odd and
even q, respectively.

The appearance of these extremes results clearly from the
interplay between periodic potential and magnetic field. It is
strongly correlated with the density of states of the system at
the Fermi level. The density of states was calculated analyti-
cally in Ref. 18. At half-filling, the density of states vanishes
linearly at the Fermi level �namely, at a Dirac point� when q
is even.11 However, there is a Van Hove singularity at the
Fermi level and the density of states is divergent when q is
odd.11 Thus the magnetic response is paramagnetic if � is
close to a Van Hove singularity and diamagnetic if � is close
to a Dirac point.

However, this connection between the extremes and den-
sity of states seems fragile if considering that there are infi-
nite rational numbers p /q with even and odd denominators
in an arbitrary small but finite interval of �. In other words,
near any rational number, say �=4 /13, there are infinite
other � at which the density of states at the Fermi level can
be either zero or divergent. So how can we attribute the
orbital paramagnetism at 4/13 to the Van Hove singularity in
the density of states?

This problem can be resolved by considering the hierar-
chical structure of the Hofstadter butterfly and the tempera-
ture smearing of the band structure. At the first rank of hier-
archy, the Hofstadter butterfly is divided into several
subcells.2 These subcells can be further divided recursively
into many sub-subcells. This hierarchical recursion defines a
parallel iterative transformation. After this transformation,
any rational � can be finally reduced to a simple rational
number, which is equal to either 1 /q� or 1−1 /q�, where q� is
an integer.

For example, �=4 /13 can be reduced to 4/5 after only
one iteration. This means in the first-order subcell centered at
the Fermi level, there are five subbands and the middle one
has a divergent density of states crossing the Fermi level. On

FIG. 1. �Color online� Magnetization of the Hofstadter model at
half-filling. The inset shows more clearly the lattice correction to
the dHvA oscillation in the high-field regime.

FIG. 2. �Color online� Magnetic susceptibility for the Hofstadter
model at half-filling. The values of � corresponding to local
maxima and minima in the T=0.02 curve are marked.
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the other hand, �=401 /1300, which is a value very close to
4/13, can be reduced to 3/4 after 19 iterations. This means
that in the 19th-order subcell, there are four subbands and the
middle two meet at the Fermi level. In this case, the Fermi
level is a Dirac point and the corresponding density of states
vanishes. However, the characteristic energy scale of the
19th-order subcell is very small compared with the thermal
energy kBT at T=0.02. Therefore, the contribution by the
singularity at �=401 /1300 to � is completely smeared out
by thermal fluctuation and only the peak at �=4 /13 can be
seen at T=0.02.

This can be seen more clearly by integrating out the den-
sity of states in an interval of kBT around the Fermi level. We
find that the integral at �=401 /1300 is hardly different from
that at �=4 /13. Therefore, around �4 /13 the density of
states at the Fermi level is determined by the Van Hove sin-
gularity in the first subcell at 4/13. A similar argument can be
applied to � with even q. The difference is that in that case,
the density of states is dominated by the Dirac points.

The above argument implies that the higher-order subcells
of the Hofstadter butterfly can be probed by increasing the
energy resolution. Thus more Van Hove singularities and
Dirac points can be discerned by lowering the temperature.
However, in the limit of zero temperature, the susceptibility

is no longer a well-defined quantity, since it can oscillate
between paramagnetism and diamagnetism in an infinitesi-
mally small interval of �. This is consistent with the fact that
the ground-state energy is not differentiable with respect to
�.

In conclusion, we have introduced a quantum transfer-
matrix method to study thermodynamic properties of the
Hofstadter model on square lattices. This method allows
thermodynamic quantities to be accurately and efficiently
evaluated without suffering from the finite-size effect. Our
study suggests that the Hofstadter butterfly can be probed by
thermodynamic measurements. In particular, the magnetic
susceptibility is sensitive to the change in the density of
states. It shows a paramagnetic peak if the density of states
has a Van Hove singularity at the Fermi level or a diamag-
netic dip if the Fermi surface is a Dirac point. Thus the
measurement of magnetic susceptibility, which can be mate-
rialized on the superlattice5 or cold atom19 systems, can re-
veal not only the fractal structure of spectra but also the
density of states of the Hofstadter model.
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