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Abstract
We develop a novel quantum transfer matrix method to study thermodynamic properties of
one-dimensional (1D) disordered electronic systems. It is shown that the partition function can
be expressed as a product of 2 × 2 local transfer matrices. We demonstrate this method by
applying it to the 1D disordered Anderson model. Thermodynamic quantities of this model are
calculated and discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For real solids, perfect periodicity is an idealization, while the
imperfections are of great importance for transport properties.
The broken translational symmetry makes the system deviate
from the extended Bloch wave behavior, and in some cases, to
localized states. As pointed out in [1], we cannot adopt the
model of ordered systems to understand disordered materials.
The concept of Anderson localization [2] and the correlation
effect [3] among electrons in a disordered medium are two
important ingredients in the understanding of disordered
systems.

As a minimal Hamiltonian for independent electrons
in a disordered potential, the Anderson disordered model
remains difficult understand at finite temperature. The
disorder itself invalidates conventional analytical methods. No
proper perturbation parameter can be chosen to deal with
the disordered Hamiltonian although perturbation theory was
applied to calculate the conductivity in the weak disorder limit.
Considerable efforts focus on Anderson localization and the
corresponding metal–insulator transition. In particular, a great
insight was gained from scaling analysis [4, 5].

In contrast to higher dimensional cases, 1D models are
often accessible to obtain detailed theoretical (analytical and
numerical) results. However, in the disordered case, it is

intractable to make calculations in the thermodynamic limit
by analytical methods even in 1D. The aim of this work is to
develop a novel method to resolve this technical problem. Our
method avoids direct diagonalization of the Hamiltonian and
allows the thermodynamic limit to be explored directly and
accurately. The key point lies in the fact that we can exploit
the full translational symmetry in the Trotter (imaginary time
or inverse temperature) direction after trading the evolution in
the real space direction with the Trotter one.

It should be noted that the transfer matrix introduced in
the present scheme is not the one usually used in the study of
disordered systems [6]. Our starting point is to express the
partition function of the system analytically in terms of the
transfer matrix, rather than to use it to trace the eigenvalues
or wavefunctions.

We will take the disordered Anderson model, as an
example, to demonstrate how the quantum transfer matrix
method works. The Hamiltonian is defined by

H = −
∑

i

ti(c
†
i ci+1 + h.c.) +

∑

i

(Ui − μ)c†
i ci , (1)

where ti is the hopping integral between two adjacent sites,
ci(c

†
i ) is a fermion annihilation(creation) operator at site i , Ui

is the diagonal disordered potential, and μ is the chemical
potential. ti and Ui can take random values satisfying their
respective distributions.
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2. Quantum transfer matrix method

As in the quantum transfer matrix renormalization group
(TMRG) [7–9] method, we first separate H into two parts,
H = H1 + H2, with each part a sum of commuting terms:

H1 =
∑

i=odd

hi,i+1, H2 =
∑

i=even

hi,i+1, (2)

where

hi,i+1 = −ti(c
†
i ci+1 + h.c.) + (Ui − μ)ni . (3)

The TMRG uses the second-order approximation of the
Trotter–Suzuki formula [10, 11]

Z = Tr(e−βH ) = Tr(V1V2)
M + O(ε2), (4)

where β = 1/kBT and T is the temperature. β is then
divided into M parts uniformly, ε = β/M and M is the Trotter
number. In the following discussions, we set ε = 0.01 for high
accuracy. The Trotter number M will increase with decreasing
temperature. In our physical results the lowest temperature
calculated is T = 0.01 (kB = 1). Certainly, lower temperature
results can be obtained if larger M is chosen. Considering
the physical quantities, for example, the specific heat C is
the second-order derivative of the free energy. Therefore, for
ε = 0.01, the results at T ∼ 0.001 are still sound in the case
of a system size L > 105.

V1 = e−εH1 =
∏

i=odd

vi,i+1,

V2 = e−εH2 =
∏

i=even

vi,i+1,
(5)

where vi,i+1 are the local evolution operators defined by
vi,i+1 = e−εhi,i+1 . By inserting 2M identities

∑
|n1 · · · nN 〉〈n1 · · · nN | = 1 (6)

between the neighboring V1 and V2 operators in (4) and
labeling successively the complete bases with l ∈ [1, 2M] (so
called imaginary time slices), the partition function can then be
expressed as

Z = lim
ε→0

∑

{nl
i }

M∏

l=1

〈n2l−1
1 · · · n2l−1

N |V1|n2l
1 · · · n2l

N 〉

× 〈n2l
1 · · · n2l

N |V2|n2l+1
1 · · · n2l+1

N 〉

= lim
ε→0

∑

{nl
i }

M∏

l=1

(v
2l−1,2l
1,2 · · · v

2l−1,2l
N−1,N )

× (v
2l,2l+1
2,3 · · · v

2l,2l+1
N,1 ), (7)

where v
l,l+1
i,i+1 = 〈nl

i , nl
i+1|vi,i+1|nl+1

i , nl+1
i+1〉 represents the

matrix elements of vi,i+1. The subscripts i and superscripts
l for n and v stand for the coordinates in the real and Trotter
directions, respectively. If we collect all v

l,l+1
i,i+1 with the same

(i, i + 1), the partition function can be re-expressed as the
column quantum transfer operators [11, 12]:

Z = lim
ε→0

Tr{T1,2T2,3 · · · TN,1}. (8)

(a) (b)

Figure 1. Graphical representation of the local evolution operator v
(a) and the local transfer matrix (b) along the Trotter and real space
directions, respectively.

In equation (8), there exist N site-dependent column transfer
operators Ti,i+1, which are defined by a product of M local
transfer operators,

T2i−1,2i =
∏

l

τ
2l−1,2l
2i−1,2i

T2i,2i+1 =
∏

l

τ
2l,2l+1
2i,2i+1 ,

(9)

where the matrix element of the local transfer operator τ is
defined by

τ
l,l+1
i,i+1 ≡ 〈nl

i , 1 − nl+1
i |vi,i+1|1 − nl

i+1, nl+1
i+1〉. (10)

The evolution of this matrix is illustrated in figure 1.
The reason for labeling the basis state by 1 − nl

i is to
ensure the conservation of the total occupation number of two
adjacent sites in the Trotter direction. Since hi,i+1 conserves
the total occupation number at sites i and i + 1, subspaces
{|1, 1〉}, {|0, 0〉} and {|0, 1〉, |1, 0〉} are decoupled. In writing
equation (7), a periodic boundary condition n1

i = n2M+1
i is

imposed in the Trotter direction.
Now let us introduce the following site-dependent

variables:

αi = −ε(Ui − μ)

2
, γi =

√
α2

i + ε2t2
i ,

bi = eαi , ui = εti sinh γi

γi
,

ai = cosh γi , wi = αi sinh γi

γi
,

(11)

bi and γi are defined by αi , in addition, there is the expression
cosh2 γi − sinh2 γi = 1. So, only three of six parameters are
independent due to three related formulae. In terms of these
variables, we obtain the following matrix elements for vi,i+1 in
the state number representation {|00〉, |01〉, |10〉, |11〉}:

v
l,l+1
i,i+1 = bi

⎛

⎜⎝

b−1
i 0 0 0
0 ai − wi ui 0
0 ui ai + wi 0
0 0 0 bi

⎞

⎟⎠ . (12)

According to the procedure mentioned above, the resulting
local transfer matrix in the Trotter direction between slices l
and l + 1 is also block-diagonal because of fermion number
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conservation. Consequently,

τ
l,l+1
i,i+1 = bi

⎛

⎜⎝

ui 0 0 0
0 ai − wi b−1

i 0
0 bi ai + wi 0
0 0 0 ui

⎞

⎟⎠ . (13)

It can be shown that this transfer matrix has the following
operator form:

τ
l,l+1
i,i+1

ui bi
= 1 +

(
ai

ui
− 1

)
(d†

l dl − d†
l+1dl+1)

2 + bi

ui
d†

l dl+1

+ b−1
i

ui
d†

l+1dl + wi

ui
(d†

l dl − d†
l+1dl+1), (14)

where the d’s are fermion operators defined in the Trotter
space. τ

l,l+1
i,i+1 is a quadratic function of fermion operators.

Furthermore, τ
l,l+1
i,i+1 can be exponentiated again to a concise

quadratic form due to the fermion exclusion principle. For
simplicity, we denote Ci = ui bi , si ≡ √

pi qi + ri
2, nl = d†

l dl

and
A = pid

†
l dl+1 + qi d

†
l+1dl + ri (nl − nl+1), (15)

then,

τ
l,l+1
i,i+1

Ci
≡ exp[pi d

†
l dl+1 + qi d

†
l+1dl + ri (nl − nl+1)]

= 1 + (cosh si − 1)(nl − nl+1)
2 + sinh si

si
A. (16)

This exponential quadratic operator form of τ
i,i+1
l,l+1 is valid only

when the four coefficients before (nl − nl+1)
2, (nl − nl+1),

d†
l dl+1, and d†

l+1dl satisfy the following four equations:

cosh si = ai

ui
,

sinh si

si
pi = bi

ui
,

sinh si

si
qi = b−1

i

ui
,

sinh si

si
ri = wi

ui
.

(17)

Now we can cast the column transfer matrix T2i,2i+1

defined by equation (9) into the following form:

Ti,i+1 = C M
i exp

[ M∑

l=1

pi d
†
2ld2l+1+ qi d

†
2l+1d2l+ri(n2l−n2l+1)

]
.

(18)
Ti,i+1 is translational invariant in the Trotter direction.

Therefore, we can introduce a Fourier transformation along
this direction:

dω =
(

dω,1

dω,2

)
= 1√

M

M∑

l=1

e−iwRl

(
d2l−1

d2l

)
. (19)

The general column transfer matrix can then be rewritten as

T2i−1,2i = C M
2i−1 exp

[∑

ω

d†
ω

(
r2i−1 p2i−1

q2i−1 −r2i−1

)
dω

]
,

T2i,2i+1 = C M
2i exp

[∑

ω

d†
ω

( −r2i e−iωq2i

eiω p2i r2i

)
dω

]
.

(20)

Substituting these transfer matrices into equation (8), we
obtain the following expression for the partition function:

Z =
∏

i

C M
i

∏

ω

Tr[2 + Tω], (21)

where

Tω =
N/2∏

i=1

t2i−1t2i,ω, (22)

t2i−1 and t2i,ω are 2 × 2 matrices defined by

t2i−1 = 1

u2i−1

(
a2i−1 − w2i−1 b−1

2i−1
b2i−1 a2i−1 + w2i−1

)
,

t2i,ω = 1

u2i

(
a2i + w2i e−iωb2i

eiωb−1
2i a2i − w2i

)
.

(23)

In obtaining these expressions, we have used the fact that
τ

i,i+1
l,l+1 /Ci is an identity matrix in the subspace {|1, 1〉}, {|0, 0〉}.

In equation (22), all multiplied matrices are exponential of
traceless matrices. Thus the eigenvalue of the final matrix
after multiplications will have the form exp[±λ(ω)]. In
the thermodynamic limit, the larger eigenvalue exp[λ(ω)]
(assuming λ(ω) is positive) will become even larger during
the multiplication in equation (22), hence the constant 2
in equation (22) can be neglected because the eigenvalue
exp[λ(ω)] dominates.

It should be noted that ω is related to the parity of M . For
odd M

ω = 2mπ

M
, m = − M − 1

2
, . . . , 0, . . . ,

M − 1

2
, (24)

and for even M

ω = (2m + 1)π

M
, m = − M

2
, . . . ,−1, 0, . . . ,

M

2
− 1.

(25)
The transfer matrix Tω in equation (22) is calculated in the
subspace of {|0, 1〉, |1, 0〉}, so the fermion occupation number
is 1 for each two unit cells along the Trotter direction. The state
space for one column transfer matrix is

d†
1 d†

2 · · · d†
2M−1d†

2M |0〉 (26)

and the total occupation number is M . Due to the periodicity
in Trotter direction, it is equivalent to calculating, in the state
space,

d†
2 d†

3 · · · d†
2Md†

2M+1|0〉. (27)

However, permuting the fermion operator d†
1 behind d†

2M will
introduce a factor (−1)M−1 because of the transposition with
(M − 1) occupied fermions. Therefore, there is the relation,

(−1)M−1d†
1 = d†

2M+1. (28)

For odd M , d†
1 = d†

2M+1; for even M , d†
1 = −d†

2M+1. As a
result, ω takes values according to the formulae (24) and (25)
respectively. In the following, we will set M even and use
equation (25).

For the focused quantum transfer matrix (QTM) method,
we emphasize that it can handle any one-dimensional site-
or bond-independent fermion model without interaction.
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Figure 2. Comparison of the specific heat coefficient C/T obtained
from two different methods: the exact energy spectrum calculation
and the quantum transfer matrix method. Here, t = 1 and U = 0.

Certainly, any spin systems which can be transformed into
the corresponding fermion models are included in the scope
of the method’s application. As shown in [13], Tω in
equation (22) can be formally regarded as the transfer matrix
for the following 1D Ising model in a magnetic field:

Z =
∑

Si

exp

{∑

i

[Ji (Si Si+1 − 1) + hi Si + fi ]
}
. (29)

For the odd sites, the parameters are ω-independent in the
corresponding 1D Ising model with the relations

f2i−1 = − 1
2 (ln |b2i−1|), (30)

h2i−1 = ln
(a2i−1 − w2i−1)

(b2i−1 + w2i−1)
, (31)

J2i−1 = 1

4
ln

2u2i−1

|b2i−1| . (32)

However, the situation is different for even sites and the
parameters Ji , fi are now ω-dependent

f2i = 1
2 (ln |b2i | + iω), (33)

h2i = ln
(a2i + w2i)

(a2i − w2i)
, (34)

J2i = 1
4 (2 ln(u2i |b2i |) + iω). (35)

The correspondence for even sites cannot provide a
material mapping to 1D Ising model because of the complex
parameters, which arise from the Fourier transformation along
the Trotter direction. Since there exists a relation T ∗

ω = T−ω,
due to the factor eiω, we can multiply in pairs the transfer
matrices with ω and −ω. In fact, the pairwise multiplication
can save us half of the calculation because of the complex
conjugate relation. When using equation (22) to solve the
partition function, what is needed is to calculate the product of
N matrices of dimension 2 for a given ω. Once Z is obtained,
the calculation of the free energy is direct, F = −T ln Z

Figure 3. The specific heat C as a function of T for σ = 0.5, 2, 4,
and 0 (red solid line).

(hereafter taking kB = 1), from which all the other
thermodynamic quantities of interest, such as the specific heat
C , can be obtained.

Figure 2 shows the result of this comparison for the
linear coefficient of the specific heat C/T . It is obvious
that the two sets of data coincide completely. The chain
length N , here, and in the rest of the paper is taken up to
217(=131 072). Furstenburg’s theorem [14] assures us that
the partition function is independent of the sample when the
system size is large enough. We need not take the random
number average for disordered cases.

3. Results

3.1. Gaussian diagonal disorder

We first consider a Gaussian-like function

P(x) = 1√
2πσ

e
−(x−a)2

2σ2 (36)

for the disordered distribution of the diagonal potential Ui ,
where a and σ are the mean value and the standard deviation
respectively. In the following discussion, we take t = 1, a = 0,
μ = 0. The controlling parameter is the standard deviation σ ,
which denotes the disorder degree of the distribution of Ui . In
these figures, the red solid line means the case without disorder,
i.e. Ui = 0 (σ = 0), and the other curves are for 〈Ui 〉 = a = 0
and σ 
= 0.

As shown in figures 3–5, the difference of the physical
quantities is slight between the cases of σ = 0.5 and 0.
However, significant differences appear when σ increases.
With increasing σ , the peaks of the specific heat C move
towards higher temperatures. The introduction of disordered
diagonal energy widens the energy band. The density of states
(DOS) distributes in a broaden energy range. This leads to the
shift of the peak position of C towards higher temperature with
increasing σ . The disorder assists the thermal fluctuations and
shifts the peak of C/T to lower temperatures. The specific
heat coefficient C/T at zero temperature is proportional to the

4



J. Phys.: Condens. Matter 21 (2009) 145407 L P Yang et al

Figure 4. The specific heat coefficient C/T as a function of T for
σ = 0.5, 2, 4, and 0 (red solid line).

Figure 5. The entropy S as a function of T for σ = 0.5, 2, 4, and 0
(red solid line).

density of states around the Fermi energy EF, i.e.,

C

T
|T →0 ∝ ρ(EF). (37)

Figure 4 shows that when the disorder increases, the density
of states near the Fermi surface decreases. The entropy S
decreases when σ increases.

Figure 6 shows how the chemical potential μ changes with
T for some given occupation numbers N . N becomes larger
with increasing μ for fixed T , while N becomes smaller with
increasing T for fixed μ. To keep N invariant, μ is a monotonic
increasing function of T . The function shows a linear form in
the high temperature regime.

In equation (21), the partition function is expressed as
product of different ω components, consequently, the free
energy F can be written as a sum of dependent free energy
F(ω). For a given temperature T , F(ω) decreases with ω

increasing. When the disorder is turned on, F(ω) changes
little except in the vicinity of ω ∼ π . This can be seen
from figure 7, which compares the difference of free energies
between the disordered (σ = 2) and ordered cases as a function
of ω. It clearly shows that the difference becomes significant

Figure 6. The chemical potential μ as a function of T for some fixed
occupation numbers N = 0.6, 0.7, 0.8. a = 0, σ = 2, and t = 1.

Figure 7. The difference F(ω)/T between disordered and uniform
cases as a function of ω/π . Here, T = 0.01, t = U = 1, σ = 2.
The inset shows the ω dependence of F(ω)/T for the system
without disorder.

only when ω approaches π . In [13], the singularity from some
special ω’s was used to discuss the phase transition.

3.2. Staggered disorder potential

We now consider a special model whose diagonal potential
energy is alternating (staggered) with the lattice site, i.e.,

ti = t, Ui = (−1)iU + Ui . (38)

When Ui = 0, the energy spectrum is readily calculated via
the Fourier transformation,

ci =
∑

k

eiki ck, c†
i =

∑

k

e−iki c†
k . (39)

The result is a two sub-bands dispersion relation,

E± = −2μ ±
√

U 2 + 4t2 cos2 k. (40)

The band gap is 2U .
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Figure 8. The specific heat C as a function of T for the uniform
(σ = 0) and disordered (σ = 2, 4) potentials. t = 1, U = 2, μ = 0.

Let us choose a uniform rectangular distribution P(x) =
1
σ

for the increment of the random diagonal energy Ui . Here,
σ is the width of the rectangular distribution satisfying

P(x) =
⎧
⎨

⎩

1

σ
, if − σ

2 � x � σ
2 ,

0, otherwise.
(41)

In the presence of disorder, the band gap is expected to
decrease with an increase of the disorder degree σ . For small
σ , there is a finite excitation gap and the specific heat drops
exponentially at low temperature, as shown in figure 8.

We also consider the case when the random potential take
only two discrete values: −σ/2, σ/2 with equal probability.
We call it the discrete distribution of the increment, and the
above rectangular distribution is denoted as the continuous one.

Figure 9 compares the specific heat coefficient C/T at
T = 0.01 for the above two kinds of distribution of random
potentials. In the case of the discrete distribution, C/T exhibits
a sharper peak. When the disordered level σ increases to
approximately 4, the band gap disappears. With a further
increase in σ , C drops to zero because the band gap opens
again for the discrete random potential. This can be understood
as follows. The two sub-bands close with each other when
disorder is introduced. The upper sub-band shifts downwards
by σ/2 and the lower sub-band shifts upwards by σ/2. When
the top of the original upper sub-band touches the zero energy,
i.e., σ/2 = 2

√
2, the two sub-bands begin to separate again.

Therefore, C/T decreases to zero at σ � 4
√

2 in figure 9. On
the contrary, for the continuous random increment case, C/T
remains a finite value even for large σ . This is because the split
of the upper and lower bands only expands the width of these
two bands, and once they touch each other, they never separate
again.

As a further investigation for C in the discrete distribution,
we choose three typical disordered degrees σ = 3.0, 4.8, 7.0,
corresponding to the three regions in figure 9, to show how C
varies with the temperature at low T . As shown in figure 10,
when σ = 3.0 and 7.0, C drops exponentially with temperature
at low temperatures. The double-peak structure of C can be
understood from the overlaps of energy bands. The discrete

Figure 9. Comparison of the specific heat coefficient C/T for a
continuous distributed random potential with that for a discrete
random potential. t = 1, U = 2, μ = 0 and T = 0.01.

Figure 10. Temperature dependence of the specific heat in three
different random potentials (σ = 3.0, 4.8, 7.0).
t = 1, U = 2, μ = 0.

increments split the original single energy band into two bands
which shift upwards and downwards by σ/2. The resulting
four bands from the upper and lower sub-bands meet pairwise.
The thermal fluctuations cause the double peaks shown in C
curves.

4. Conclusion

For the 1D disordered system, the quantum transfer matrix
method we have developed is applicable to all kinds of
disorder distribution types and strengths. The non-diagonal
disordered problem can be handled, since the partition function
Z can be expressed as the product of site-dependent local
transfer matrices. Compared to the diagonal disordered cases,
we only need to modify the local transfer matrix elements
correspondingly.

We have studied the thermodynamic properties of the
1D disordered Anderson model. We discussed two kinds
of diagonal (potential) disordered models, with or without
staggered potentials. The free energy F can be written as a sum
of different ω components from the Fourier transformation in
Trotter space. Compared to the system without disorder, the
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most significant difference in F(ω) shows only in the region
very close to ω = π . The disorder changes the distribution of
DOS, leading to a difference in the thermodynamic quantities
in comparison with the disorder-free system. All the results
shown in the figures are for systems with a number of sites
greater than 105. This kind of calculation is far beyond the
capacity of exact diagonalization.

The transfer matrix method has a broad range of
applicability and can be used to discuss any non-interacting
fermion model. Recently this method has been used to
calculate the thermodynamic quantities of the Hofstadter
model, which describes the behaviors of tightly-bound Bloch
electrons in a magnetic field [15, 16]. In the Landau gauge,
the Hofstadter Hamiltonian can be decoupled into a sum of
one-dimensional Hamiltonians; this falls into the application
range of the quantum transfer matrix method.
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